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THE FIRST NONTRIVIAL GENUS 
OF POSITIVE DEFINITE TERNARY FORMS 

IRVING KAPLANSKY 

ABSTRACT. The first nontrivial genus of positive ternary forms has discriminant 
7. The paper presents all known results concerning this genus, including some 
computations. 

1. INTRODUCTION 

The subject of ternary forms is venerable. In Dickson's History the account 
begins with Diophantus for the basic case of sums of three squares; for the 
general ternary form the story begins with Gauss. 

There is much to study concerning ternary forms, but in this paper I am 
concerned only with finding the integers they represent. This topic took a big 
jump when Jones [ 1 ] proved that, taken together, the forms of a genus represent 
all numbers not ruled out by congruences (I will call these the eligible numbers). 
Thus, attention is confined to genera containing two or more forms. 

Despite a history approaching two hundred years, the very first nontrivial 
case is still not completely understood. In this first case (meaning that the 
discriminant is smallest) the genus consists of f = x2 + y2 + 7z2 and g = 
x2 + 2y2 + 2yz + 4z2. The eligible numbers are those not of the following form: 
the product of an odd power of 7 by a number congruent to 3, 5, or 6 mod 
7. The problem is to disentangle which eligible numbers are represented by f, 
which by g, and which by both. 

In this paper I collect everything that is known about this problem, includ- 
ing some computations. If the conjectures spawned by the computations are 
confirmed by theorems some day, our knowledge will be complete. 

In remark (a) at the end of the paper I report the result of a computation 
concerning a question raised by Jones and Pall in [2]. 

2. THREE THEOREMS 

The theorems assert that eligible numbers which satisfy certain congruences 
are represented, subject to a supplementary condition in the case of Theorem 
2. Proofs are presented in ?5 below. 

Theorem 1. The form g represents all eligible numbers congruent to 0 or 2 
mod 3. 
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Theorem 2. The form f represents all eligible multiples of 9; it also represents 
all numbers congruent to 2 mod 3 which are not of the form 14t2 . 

Theorem 3. The forms f and g represent all eligible numbers that are congruent 
to 0 or 1 mod 4. 

3. A CONNECTION WITH TWO OTHER FORMS 

The forms h = x2 + y2 + 14z2 and k = x2 + 2y2 + 7y2 constitute a genus. 
They have discriminant 14, twice the discriminant of f and g. The two genera 
have the same eligible numbers. 

The forms h and k are so closely connected to f and g that studying them 
is equivalent to studying f and g. The advantage of making a change is that 
we avoid the bothersome cross product in g. 

Lemma 1. The form f represents an integer A if and only if h represents 2A. 
Proof. From f = A we get 

2A = 2f = 2x2+ 2y2 + 14z2 = (X +y)2 + (x _y)2 + 142. 

Conversely, assume x2 + y2 + 14z2 = 2A. Necessarily x and y have the same 
parity. Write u = (x +y)/2, v = (x - y)/2. Then 2u2+ 2v2 = x2 +y2 and 
u2 +v22+ 7z2 -A. o 

Lemma 2. T he form g represents an integer A if and only if k represents 2A. 
Proof. We have 

2g = 2x2 + (2y + Z)2 + 7z2 = 2A. 
Conversely, assume 2x2 + u2 + 7z2 = 2A. Necessarily u and z have the same 
parity. Write u = 2y + z. Then x2 + 2y2 + 2yz + 4z2 = A. El 

These two lemmas are all we need in this paper. The connection is completed 
by the following easily proved statement: an odd number A is represented by 
h (resp. k) if and only if 2A is represented by f (resp. g). 

4. COMPUTATIONS 

In studying the numbers represented by f it is advantageous to introduce 
the companion form f* = x2 + 7y2 + 7z2. That gives us two forms to study, 
but we gain a significant simplification: we can ignore multiples of 7, which 
merely bounce us back and forth between f and f* . As for the form g, we 
shall take advantage of Lemma 2 and study k instead, pairing it similarly with 
k= X2 + 7y2 + 14z. 

I am greatly indebted to Michael Reid who programmed and ran the following 
four computations, as well as the one reported in remark (a) at the end of the 
paper. 

List I. Up to 100,000 there are 27 numbers prime to 7 not represented by f: 
3, 6, 19, 22, 31, 51, 55, 66, 94, 139, 142, 159, 166, 214, 235, 283, 439, 
534, 559, 670, 874, 946, 1726, 2131, 2419, 3559, 4759. 

List II. Up to 100,000 there are 26 numbers congruent to 1, 2, or 4 mod 7 
whicharenotrepresentedby f* 2, 22, 46, 58, 85, 93, 102, 205, 298, 310, 
330, 358, 466, 478, 697, 862, 949, 1222, 1402, 1513, 1957, 1978, 2962, 
3502, 7165, 10558. 
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The complete list of eligible numbers not represented by f is obtained as 
follows: multiply List I by any even powers of 7 and List II by any odd powers 
of 7. A similar remark applies to k. 

List III. Up to 100,000 there are 3 numbers prime to 7 not represented by 
k: 5, 20, 158. 

List IV. Up to 1 00,000 there are 3 numbers congruent to 1, 2, or 4 mod 7 
which are not represented by k*: 2, 74, 506. 

If it is proved some day that these four lists are complete, our knowledge of 
the integers represented by f and g will be complete. 

5. PROOFS OF THE THEOREMS 

Proof of Theorem 1. In [3] Pall proved that k represents all eligible numbers 
congruent to 0 or 1 mod 3. By using Lemma 2 we deduce Theorem 1. o 

Lemma 1 enables us to replace Theorem 2 by Theorem 2'. 

Theorem 2'. The form h represents all eligible numbers which are multiples of 
9; it also represents all eligible numbers which are congruent to 1 mod 3 but 
not of the form 7t2 . 
Proof. The basic idea is Pall's, but I run it backwards, and some additional 
arguments are needed. 

Let A be an eligible number for which we plan to prove representability 
by h. If k does not represent A, then h does (because h and k together 
represent all eligible integers). So we may assume that k represents A. We 
have the following identity: 

(1) k = x2 + 2y2 + 7Z2 = X2 + (2y + 7Z)2/9 + 14(y - Z)2/9. 

The left side of (1) represents A and therefore so does the right side. Our 
goal will be achieved if we can arrange y _ z (mod 3), for then 2y + 7z 
and y - z will be divisible by 3 and we will deduce that h represents A. 
Since we can change the sign of y and/or z, we can alternatively say that 
the goal is to arrange y2 = Z2 (mod 3). Since all squares are congruent to 0 
or 1 mod 3, failure means that we have either y2 = 0, Z2 = 1 (mod 3) or 
y2 -1 Z2 = 0 (mod 3). We now distinguish the two cases of Theorem 2. 

Assume that A is divisible by 9. In particular, x2 + 2y2 + 7Z2 is divisible by 
3. We see that y2 =0, Z2 1 is ruled out, and we must have y2 = 1, Z2 = 0, 
from which x2 =1 follows. Then x2 + 2y2 is divisible by 9. It is known 
that u = (x2 + 2y2)/g is again expressible as v2 + 2w2. Then X2 + 2y2 + 7Z2 

becomes (3v)2 + 2(3w)2 + 7Z2. In this expression for A, 3w and z are both 
divisible by 3, and so we have achieved our goal. 

Assume A =1 (mod 3). This time it is y2 = 1 Z2 = 0 (mod 3) that is 
ruled out. So y2 = 0, Z2 =1 must hold, and x2 = 0 follows. We interrupt 
the main proof at this point for a lemma. It is probably known, but I could not 
find a reference. 

Lemma 3. Suppose that r is a nonzero integer divisible by 3 and expressible as 
52 + 2t2 . Then r can be so written with s and t both prime to 3. 
Proof. The proof is by induction on r and starts with r = 3, where it is evident 
by inspection. It is known that r/3 can be written a2 + 2b2. If r/3 is prime 
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to 3, then it is not possible for a and b both to be divisible by 3. If r/3 is 
divisible by 3, by induction we can even arrange that both a and b are prime 
to 3. In any event, we can suppose that at least one of a, b is prime to 3. We 
now write 

(2) r = 3(a2 + 2b2) = (a ? 2b)2 + 2(aF b)2. 

By appropriate choice of sign we can make the two summands on the far right 
of (2) both prime to 3, as required. 0 

We return to the proof of Theorem 2. Recall that we had A x X2 + 2y2 + 7z2 
with x and y both divisible by 3 and z prime to 3. Write r x X2 + 2y2 and 
note that r is divisible by 3 (in fact by 9). If r = 0 then A - 7z2, which is 
ruled out by the hypothesis of Theorem 2. So we assume r : 0. Lemma 3 is 
applicable, enabling us to write A as u2 + 2V2 + 7Z2 with u and v prime to 
3. Now v and z are both prime to 3, and our goal is achieved. O 

Remark. The exceptional case in Theorem 2' really occurs at least twice: x2 + 
y2 + 14z2 does not represent 7 or 28. But it may be that there are no further 
exceptions. To scan this numerically, let us switch to Theorem 2. We have that 
f = X2 + y2 + 7z2 does not represent 14. List II shows that up to 700,000 
there are no further eligible numbers of the form 14t2 that are missed by f 
(this comes down to the fact that 2 is the only entry in List II which is twice a 
square). 

Proof of Theorem 3. Pall [4, p. 344] stated this theorem without proof. Dennis 
Estes showed me the following proof, which he kindly allowed me to incorporate 
in this paper. 

Remark. For Theorem 3 it seems to be counterproductive to switch from f, g 
to h, k, even though we get rid of the cross product term in g. 

Let B be an eligible number with B 0 O or 1 (mod 4). The plan is the 
usual one. For instance, in proving that f represents B we are entitled to 
assume that g represents B. The basic identity to be used is 

(3) f(x, w - 2z, w) = g(x, 2w - z, z), 

together with the automorphism of g given by 

(4) g(x, -y- z, z) = g(x, y, z). 

Now suppose that g(u, v, w) = B. If v and w have the same parity, we 
see from (3) that f represents B. If v is even, use (4) to rewrite g(u, v, w) 
as g(u, -v -w, w); now the second and third arguments have the same parity, 
so again all is well. The only remaining case is that where v is odd and w is 
even. Then in 

B = -2 + 2v2 + 2vw + 4W2 
the terms 2vw and 4w2 are divisible by 4, 2v2 -= 2 (mod 4), and u2 = 0 or 
1 (mod 4). This is incompatible with B- 0 or 1 (mod 4). 

The argument is similar the other way around. We assume that B = 
f(u, v, w) and seek to prove that g represents B. If v and w have the 
same parity, (3) does the job. Since f is symmetric in its first two arguments, 
it is just as good to have u and w with the same parity. Surviving are two 
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cases: (a) u, v odd and w even, (b) u, v even and w odd. In case (a), 
u2+v2+7w2 =_ 2 (mod 4), and in case (b), u2+v2+7w2 =_ 3 (mod 4). 
This concludes the proof of Theorem 3. 0 

Remarks. (a) In [2, p. 181] Jones and Pall discussed the numbers of the form 
8n + 3 not represented by 2x2 + 4y2 + 4yz + 9z2. They noted 3, 43, and 163 
and asked if these were all. Up to 100,000 there is just one more: 907. 

(b) John Hsia called my attention to the fact that there are several different 
conventions for the discriminant of a ternary form. For some of these the 
nontrivial genus with smallest discriminant consists of x2 + y2 + 3z2 + xz and 
x2+y2+4z2+xy+xz+yz. The first of these forms is regular (i.e., it represents 
all eligible integers); the second is not regular and, as far as I know, there has 
been no computational exploration of the integers it represents. 

Added in proof (June 22, 1994). Recently two anticipations came to my at- 
tention. (1) Theorem 3 for the form f appears in Jones's unpublished 1928 
University of Chicago Ph.D. thesis. The proof is different. (2) Lemma 3 can 
be found on page 173 of [2]. It is not stated explicitly but arises in the middle 
of a proof. The proof is the same. 
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